
6h~ = 0.2953, 5h~ = 0.2095, 5h~ = 02096; 

compression behind wave 0~/po : 1.05 

o 

8 h ~ =  0.3184, 5 h ~ =  0.2216, 6h~ = 0.2217. 

The author thanks S. K. Godunov for his continuing interest in the work and for his 
fruitful observations. 
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]EQUATIONS OF THE LINEAR THEORY OF ELASTICITY WITH POINT 

MAXWELLIAN SOURCES OF STRESS RELAXATION 

S. K. Godunov and N. N. Sergeev-Al'bov UDC 539.373 

i. General Solution. Relationships on the Characteristic 

The system being studied has the form 

(ix ax ay 

0 ~ av ach~ 8c~2 O, 
i o k' c)x ax ay 

aol  I o art, C = ,-p~ - (co 2 ~ a ~  ~x ~ 90 -- 25o) ~ = O, 

0~,, .~ o . _ o ~  # u  ,2 @v 
-- -- 2 0 5 ) = -  -- poCo j-~-j =: O, 

#(L~ o o /au au k 
- + -- o, 

) U Oat., _ a,  av ', " -- Pob~ + ~-z = O, 
62/: 

(i. i) 

where o~, o2a, ~3~ o~2 are the components of the stress tensor; u + U is the horizontal 
component of the vector of the displacement rate of points of the medium (U <bo <co <<U); 
v is the vertical component of the vector of the displacement rate of points of the medi- 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
4, pp. 140-152, July-August, 1977. Original article submitted May 19, 1976. 
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um; Po is the density of the medium; co is the longitudinal velocity of sound; bo is the trans- 
verse velocity of sound. 

The system (I.i) can be transformed in such a way that for the four functions ox,(x, y), 
o a = ( x ,  y), o s s ( x ,  y), ~ta(x, y) we obtain the system 

(](T12 _ -  CgU G9~7~ 2 
Oy -" P~ Ox Oz ' 

o o  

O~o Po (c'6[ "- -- 4b~,,.'g, • 4b. au 

ciU 
Ov 
r)x ' 

c 5 -- 2b~, Ou 
c~ Ox' 

c~ -- 2b 5 Oat2 
8y 

au U hal  .2 
- -  . )  

5g Pob:~ Ox 

Ov U 0o.::, 
Oy 9oC' ~ Ox 

Oz c{ 2' Ox ' 
(1.2) 

which has to  be supplemented on the twofold characteristics y = const: 

" o / 2 9 - 2  ] 

�9 . - 

" " " o "' /c 2 _  9b2"\ "] 
(1.3) 

The system (1.2) is of the elliptic type; its general solution is represented in terms 
of two analytic functions F(z,) and P(z=) of the arguments z~ and z=, where z, - x + i~,y; 

za = x + i~ay; 

~i V I U; 1 , /  t "~ = -= ; to. = i �9 

The real and imaginary parts of the functions 

F.(zO = / ( x ,  y) - - . i g ( x ,  y), P(x ,  y) = p(x ,  y) + iq(x, y) 

are connected by relations of the Cauchy--Riemann type 

O/ l Og Op .... I Oq 

Ot Og ~2 = ~q 
0--~ =-- - -  ~% -dVx ' du  - -  o.2 T ; "  

The solution of (1.2) has the form 

a v a ( x . y ) = - - I m [ ~  F ( z l )  , ~ P ( z o )  , 

a l .  (z, V) '= He {F (z,)  4- P (z.,)}, 

u l !  z,,~ p (z~) I u ( x , y ) = ~ h n ~ o l F ( z J  , - - -o  
2pob~ t -- (o3 

v (x,  y) = & Fie iF  (z~) , I -o.~ P (z2) �9 

(1.4) 

The representation of the solution in terms of two analytic functions is analogous to 
the representation given in [i], with the difference that in [1] the unknowns are not the 
displacement rates of points of the medium but the displacements themselves. 
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The relations (1.3) give us the possibility of determining u~(x, y), e~(x, y) from 
~aa(x, y) and u(x, y). 

_2. Interpretation of the Right Sides 

Let a source, describable by delta-formed right sides of the equation system being stud- 
ied, be concentrated at the origin of the coordinates of the plane (x. y), which moves at a 
subsonic velocity. It is necessary to determine the stresses and displacement rates of point~ 
of the medium. 

The system of equations in this case has the form 

o~a o,h~ = R ~ ( z )  ~ (~), P~ U Ou 
Ox Ox Oy 

poU o. o~,.. o%~ = ~ (z) 8 (~), 
Ox Ox Oy 

0~,,. 2 0 u  Ov 
- -  OoC0 V ;  - -  po(C~ - -  2b~) ~ -  = %6 (x) 8 (y) ,  U 

( 2 . 1 )  

U o.~. ., - -  - p,-S, = q.,6 (z) 6 " 

--9o~.co--2b5) Oz r ~ =%6(x)  6(g), 

u , , . -  - ~ / =  %6 (z) 6 (~). 
~ =  P0% [Oy , 

The presence  of  the  r i g h t  s i d e s  in the system of  equa t ions  (2.1) l eads  to the  f a c t  t h a t  
r i g h t  s i d e s  appear  in  the r e l a t i o n s  (1 .3)  and, c o n s e q u e n t l y ,  zax(x~ y) and zsz(x~ y) a re  de- 
te rmined from u(x ,  y) and ea~(x ,  y) as f o l l o w s :  

i ~ ' '~ (z~)l 1 
z n ( x , y ) = I m  : F ( z O  ' o~o, P ' .VO(x) 6 (y ) ,  

2o~ Y 1 -;- (o~ -W 
o o 

~s~ (x, y) = [,a : " - - - -  F ( z 0 [  + M 0  (z) 6 (~j), [ 2% 

(2.2) 

where N =W q~i co ?.z ; 

c~ 

Everywhere, except in the neighborhood of the origin of the coordinates~ ~aa, o~a, u, v in 
the solution of the system (2.1) can be determined from the expressions (1.4), while the con- 
centrated right sides (for x = 0, y = 0) can be satisfied, choosing F(z~), P(z=) in the form 
F(z~) = (A + iB)/z~, P(z2) = (C + iD)/za, 

wher e 

A ---~'[~V- ~; B =  --- r 
i - o , : ,  .~., i ~ -~ .~v 4 ] '  

c - ~ -~ ~o-~ L ~  ~ ~ 2,.,, , ; D  = ~ ~[.o,~ ~-- ~ v  4" " 

If the behavior of the medium is described by the Maxwellian relaxation model, then the 
system of equations has the form 
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e~U a~ ao .  a,~,~. = ~~6 (x) ,3 6;0, ax 6x aL, 

,o U a,, a ~  ,a0.~._ = (;a (x) ~ (~I), o - f f f - -  ~.,,x - -  ay 

aO-ll 9 #U o 1 ! 

CtJ 

tga.o~ " o~21 a! i  .~ av 1 ( 
U 7E=  - -  Po (c~ - -  -~,-,o,, ~ T  - -  ~ c ~  ~ = u a,~ 

bx - -  ay ~ sa 

,7,1 --- 0"22. -'-- a,~ 
3 ) 

U ox "P~176 ay a x ,  , 

where r is the relaxation time of shear stresses, being, as a rule, a suddenly varying func- 
tion of the stress state. 

We assume that the applied forces or some other causes give rise to plastic strains that 
are describable by the Maxwellian model only in a small neighborhood of the origin of the co- 
ordinates x = 0, y2= 0. This assumption can be modeled, putting I/T equal to zero outside 
the circle {x 2 + y ~ ca} = K and equal within the circle to the effective value i/Ts, where 
T s is the characteristic relaxation time in the plastic zone. 

We shall assume that ~,, ~a, ~s, ~4 constitute "powers" of relaxation that are "summary" 
over the entire plasticity zone; their values will be modeled by the following integrals: 

~=--J a. 0.11~0.~0.~ d~@ (i=1,2,3), 
K (2.3) 

S 
When using the scheme developed here for the estimates of the numerical perturbation 

values, which are introduced by the presence of the plasticity zone, we can calculate the in- 
tegrals (2.3) from the solution of the elastic problem, i.e., from the solution of the prob- 
lem with ~1 = ~a = ~3 =~4 = 0. 

We see that in the model under consideration the relation 

~i + q~2 + ~ = 0 (2.4) 

is fulfilled. 

Thus, if the behavior of the medium is described by means of the Maxwellian model with 
point sources of relaxation, then the right sides of the system (2.1) have the following 

meaning: ~, ~a, gs are the powers of the relaxation sources of the normal stresses;~ is 
the power of the relaxation source of the shear stress; (R, G) is the power of the vector of ex- 
ternal force applied to the medium in the neighborhood of the origin of the coordinates. 

The stresses ~ and o3s are given by the expressions (2.2), from which we see that for 
nonzero powers of the relaxation sources of normal stresses, the stress trace remains behind 
the singular point along the real axis. This trace is characterized by the quantities N and 
M. 

3. An Estimate of the Stressed Layer 0ccurrin $ under th E 

Action of a Point Die 

We consider the problem of determining the field of stresses and velocities in a half- 
plane (y < 0) moving at a subsonic velocity U, if we know that the boundary of the half-plane 
is free from stresses o12(x, 0) = o22(x, 0) = 0, while in the neighborhood of the origin of 
the coordinates a force with components (R, G) is applied to it, and there exists a point 
source of stress relaxation modeling plastic strains close to the application point of the 
force. 
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The stress state of the half-plane is described by the system (2.1). The boundary con- 
ditions and the right sides concentrated in the neighborhood of the origin of the coordinates 
are satisfied if in the expressions (1.4), (2.2) we put F(z~) and P(za) equal to 

where 

No = ]___ (1-~-~2)2. 
4(oio~ 2 

Behind the application point of the force along the boundary of the half-plane (on the 
positive part of the real axis) there arises a stress trace. The appearance of this stress 
trace is caused by the presence of the point source of relaxation of normal stresses in the 
neighborheod of the application point of the force. From the solution thus obtained it is 
seen that the stress trace has the same effect on the elastic solution, i.e., on the solu- 
tion in which we do not take into account stress relaxation, as a force applied in the neigh- 
borhood of the origin of the coordinates having the components (N, 0). 

Let the square of the rate of motion of the half-plane be considerably less than the 
square of the velocity of the transverse sound waves, i.e., U a <<b~. In this case we can 
obtain an expansion of the solution by powers of the ratio Ua/b~. The terms with zero degree 
of the expansion parameter have the form 

2G 

~2 (z, ~) = 2G y3 
.~ (x ~ y-)" 

a ~ (x ,  y) 

x~-y 2 (R I-- N ) z 3 
(x" -r- y~)~ + NO (x) 6 (y), 

2 (R + N) xy~ 
u (z'- + y~)2, 

a (x 2 + y"-) ~ ~"2g-'~-~'l ~ (x~ + y2) q- 

, ' -  MO (z)  ~ (y) ,  
2G xy"- 2 ( R .4- N) x~-y 

~ 2  (x, g) = a ( ~  - :  y "-)~ .~ (~"- - yff" 

~o (x, ~; = ~  t-- x -  <o - ~ ) ( ~  + r ~ (~" + ~:)" 

~[( ~o ~ ~ ~:y-~]} 
-~ %~- b~) ( ~  ~- y-') ( ~  + r ' 

- - a -  7 - ~  ' r  ~- (x~ + r _ ( % - b ~ )  ( ~ : *  

(3.1) 

Let the force applied to the half-plane be directed vertically downward, i.e., R = 0, 
G < 0. In this case the elastic part of the solution (3.1) gives the solution of the prob- 
lem of a concentrated force applied to an elastic half-plane [2]: 

ea x,y ( ~ g 2 ( z , y ) -  2a y~ 
og. (x,  y) = - T ~z~ -r y2),, . ~ ( ,~ + ~)~, 

(3.2) 
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We assume that the vertical force applied to the half-plane gives rise to plastic strains 
described by the Maxwelllan model only in a small neighborhood V = {(x, y)Ix a + ya~h2, y 
< 0} of the application point. Then, according to (2.3), 

3 ~8 ' 
V 

We use the expressions (3.2) and calculate the values ~,, ~a, ~ , ;  

2G c 5 - -  2bo 2G " c~ 2G 
~ = ~  -9-~_.-:vb~ ' q ~ = "  c~----bo "~ h , % = ~  ~_bo2 h. 

We assume that the stress trace arising behind the application point of the force is 
distributed across a layer of thickness h. Then the magnitude of intensity of the stress 
layer is determined from the expressions 

(%) 4G c5 - -  2b~ \ 2G 
N 3~TsU ~ ~ M - - - -  - -  h .  

c 5 - b~ 
(3.3) 

By the condition G < 0 for velocities of sound the inequality c~ > 2b~ holds; conse- 
quently, 

N < 0 ,  M < : 0 .  (3.4) 

The dimensions of the plastic zone can be estimated, for example, as is done in [2]. 

For thls we use the Mises yield condition 

where o s is the yield point of the material, and from the elastic solution we find that the 
plastic zone in this case is a circle {x a + [y (ds/2)]a -~<ds } whose diameter is given by 

the expression 

I c <  o), (3.5) d~ = -- :.~(r 

where 
i c~ -- 2b~ 

Since in reality the load is distributed over an area, although of small but finite 
width, then in the estimation of the intensity of the stress layer it was assumed that the 
plastic zone was concentrated in the region V whose depth of penetration was less than the 
depth of the plastic zone given by the expression (3.5); i.e., h~d s. 

Thus, under the action of a point die on a half-plane m6ving at a subsonic velocity, 
along the boundary of the half-plane there arises a stress layer whose intensity is determined 
by the expressions (3.3), while by virtue of (3.4) the stresses in this layer are compressive. 

4. The Stress Trace in the Problem of Impacting Plates 

under the Conditions of ExplosiveWelding 

Let two plates of equal thickness H collide with one another under the conditions of 
explosive welding [3]. We approximately assume that the plates in the plane (x, y) connected 
with the point of contact are depicted by the strips {-- H < y < 0}, {0 < y < H}. The stress 
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state of such plates is described by Eqs. (2.1) in a coordinate system moving together with 
the point of contact. The banks of cross sections are directed along the negative part of the 
real axis and are free from stresses 

or_,(x, O)1~<o = O, ~,z~(x, O)lz<o = O. (4.1) 

The boundary conditions (4.1) and the right sides concentrated in the neighborhood of 
the point of contact are satisfied if we put F(z~) and P(za) in the expressions (!.4) and 
(2.2) equal to 

''q P{ o % F (~}  = ~o ~ ,  V ~  ; -  ~q \ ~,0~% / 

where 

o [( 
P =  1--r 

q=t_---~22 ,I 

1 ~to~% / Z4- § ,, 1 4to~% ~U j '  

4%~2 " 

The solution with a singularity at x = y = 0 presented here describes the character of 
the stress state near this point. This character must not change if we attain fulfillment 
of the boundary conditions for y = • which are not taken into account here. 

The deformation of the medium takes place without variations of the mass; i.e., the 
equation 

az -- -ffz +~y --0, (4.2) 

where cx~, e a z ,  caa are the components of the strain tensor, is satisfied. 

If we assume that in the neighborhood of the point of contact there is an outflow of the 
mass, then Eq. (4.2) has to be altered go 

U a (s~, 4- aze~-~ + e~.~) _ ~,[aUam ~- ~av ) = c~o~oQ 6 (x) 6 (y), ( 4 . 3 )  

Where Q/c~ is the power of the outflow of the mass, Q > 0. 

This outflow can be considered as a modeling cumulative jet which arises in the plastic 
region at sufficiently high strain rates. 

The components of the strain tensor and the stress tensor are connected with one another 
by Hooke's law. Then 

( zl~ + %,z + %.~ = 3Po c~ - -  T b (e~  - -  e22 + es~) 

and Eq. (4.3) assumes the form 

U 0 (~H , e~2 n- ~33) 
Ox = 3 co - -  T ~ 
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if there is an outflow of the mass, then the conditions (2.4) must be changed to 

% §  Co---g-bo c~" 

Let the relaxation take place so that the powers of the relaxation sources of the stress- 
es satisfy the relations 

% = qb, q~', > O. (4 .5 )  

If ~0i (i = i, 2, 3) satisfy ~he conditions (4.4), (4.5), then 

r -= 3 Co -- -~ b 2c~ 2 " (4.6) 

A stress trace remains behind the point of contact along the positive part of the real 
axis. 

The stresses in this layer are determined by the quantities N and M. In the case (4.5) 
N = M. Using the expression (4.6) we obtain 

N =  3 c 2 -  '~" ] 2c~ " (4.7) 

We shall investigate the expression thus obtained. If the power of the mass outflow is 
zero, then 

( 
-C o 

and since in view of (4.5) ~ > 0, then N < 0. This means that if in the problem of impact 
of two plates there is no outflow of the mass in the neighborhood of the point of contact, 
then on the line of the joint of the plates there is formed a stress trace subjected to com- 
pressive stresses. 

Let in the neighborhood of the point of contact there be an outflow of the mass, with 
its power Q being equal to the power ~2 of the source of relaxation of the normal stress. 
Then N = 0 and, consequently, after the point of contact no stress trace is formed; i.e., the 
presence of the outflow Of the mass, which in power is equal to the power ~ of relaxation 
of the normal stress, removes the stress layer in the neighborhood of the point of contact. 

We note that in [4] it is experimentally established that the phenomena of wave forma- 
tion and cumulative jet formation, as a rule, mutually exclude one another. In the zone of 
parameters corresponding to stable formation of a cumulative jet no welding waves are usually 
observed, and conversely, under the conditions of wave formation clearly discernable signs 
of a jet are absent. 

Apparently, this is connected with the circumstance that according to (4.7) the outflow 
of the mass removes the stresses in the trace after the point of contact. In this case it is 
natural to expect that the presence of the stress trace is the cause of the wave formation. 

The problem of impacting plates in an elastic formulation was investigated in [5], where 
the plastic strains in the neighborhood of the point of contact were not taken into account 
and, therefore, the formation of a stress trace behind the point of contact was not noted. 

5. Numerical Estimate of the Quantities U and y Necessary 

for Stabil~ty Loss of the Stress Layer 

Let the stress trace arising behind thepoint of contact be distributed over the layer 
of thickness 2h. Then the intensity of this stress layer can approximately be estimated as 
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follows~ We assume that the action of one plate on the other is the action of a point die 
on a moving half-plane whose velocity coincides with the velocity of the point of contact. 
The force with which the die acts on the half-plane is determined from the law of conserva- 
tion of the vertical impulse. It is determined from the expression 

G = poUCH s~n (?/2), (5. l) 

~ere H is the width of the plate; y is the angle of impact. In the following we shall as- 
sume that the force is concentrated in the neighborhood of the point of contact. 

With such an assumption the estimate of the intensity of the stress layer in the prob- 
lem of plate impact under the conditions of explosive welding reduces to the estimate, car- 
ried out above, of the intensity of the stress layer that arises as a result of the action 
of a point die on a moving half-plane. 

Following the idea proposed in [6], we consider the following model problem. Let the 
stress layer arising on the line of contact when impact welding two plates be a two-layered 
rod; let each of the rods be subjected to compression with an intensity N. On the line sep- 
arating the rods, at a sufficient distance from the point of contact, the stresses ~:~ and 
oaa are zero in view of symmetry of the problem. We shall assume that the wave formation 
during explosive welding is the loss of stability of the rod compressed by a longitudinal 
load 2N and attached to the elastic half-plane. In essence this hypothesis consists of the 
fact that the wave formation during explosive welding has a cause which is completely analo- 
gous to the cause of star-shaped deformations of tubes close to detonating charges of explo- 
sives described in [7]. 

To confirm this hypothesis we have to determine whether U and y exist, for which the 
stress layer is compressed by a load equal to or exceeding the critical load, and how close 
these U and y are t% the experimental values. 

The differential equation for transverse flexure of a rod of height h, compressed by a 
load Toh and fixed to an elastic foundation has the form 

E~ d4~ T h d~ -1- ( s . 2 )  

where Eo is Young's modulus of the rod being compressed; oo is the Poisson ratio; R is the 
reaction of the elastic foundation. 

Let after the loss of stability the rod have the flexure 

~(x) = Ae ~c~ (A -- const). 

For such flexure the value of the reaction of the elastic half-plane is given by the expres- 
sion 

E~ 
R 

/ \ (s. 2 (~ - o~) ~xj, ~ 

where E is Young's modulus of the elastic foundation; ~ is the Poisson ratio. 

We substitute the value of R given by the expression (5.3) into Eq. (5.2); after a trans- 
formation we obtain 

(5 .4)  

where X = 2~/a is the length of the wave into which the rod is bent; 

3 (1 - ~ 2 )  3 E ( t - ~ 2 )  
P : :  ~2E To;  q 4 ~  a E o (1 - -  ~)" 
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TABLE % 

Do 
Po %/, 

!0 0,i6t 
3o o11t2 
60 0,09 
90 o,o8 

2,0 !3 0,t83 
l',~ 9 0A27 

8 0,1 
i 7 0,088 

Fe 

Mh 

2,0 
t,4 
1,t 
i 

0 
V+ 

t7 
t2 
t0 
9 

TABLE 2 

Mate- 1 fiat P o g /  
a m 3  

Cn 8,900 

Fe 7,840 

co, km / 
s e e  

4,65f 

5,694 

b,, k /  
s e e  

2,!409 

2,8659 

U, kin/ 
sea 

2,o 

r I 
I 

r ~ 20 ~ r ~ 

U, km/l  
s e a  

2,o 

~,5 

20 ~ 

I 

Fig. 1 Fig. 2 

We introduce the notation 

E (t  - -  o2o) To 

In this notation the coefficients p and q of the cubic equation (5.4) are written in the form 

p --  ~2 Do' q - -  4n3 �9 

Thus, the problem of stability loss of the rod fZxed tO an elastic foundation and being 
compressed by a longitudinal load Toh has been reduced to finding, for a fixed parameter Do, 
of the value of the parameter Po for which Eq. (5.4) has a double real root, 

Solving the prcblem thus obtained, we find the expression for Po dependent on Do: 

$/y E (5.5) 
P o =  V D. <OoC~ (t _ o 2 )  

Since on the line of contact of the plates the material deforms plastically, Young's 
modulus of the rod in compression assumes a certain effective value which in magnitude does 
not exceed the modulus of elasticity of the material; i.e., Eo < E and, consequently, Do > i. 

The critical values of Po determined by (5.5) and the corresponding wavelengths into 
which the rod is bent are presented for copper and iron in Table i. The values of poCo, 
bo are given in Table 2. 
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TABLE 3 

D~I Cu FO 

i ') 3 4 5 i '~ 3 $ 5 

10 53 
30 65 
60 72 
9 ~ 70 

33 
43 
4q 
o3 

2~ 
32 
38 
41 

t9 

3[ 
33 

16 52 
2i 6~ 
2{~ 7 2 
28 70 

32 
42 
4~t 
53 

'2~ 
31 
37 
41 

19 
25 
3O 
z3 

15 
21 
26 
28 

TABLE 4 

.e\I ,,s6 

17 2O 
~6 
15 
14 
i3 
12 

t , 6 6  

22 
24 

t,77 i,9 2,04 2,21 0,85 0,9 

Cu 

0,96 1,03 

Fe 

26 
27 
29 

29 
3i 
33 
36 

34 
36 
39 
41 
44 

40 
42 
45 
48 
52 
57 

i9 2t 
22 

28 
30 
32 
34 

25 
25 
27 

t 

i,ll 1,2 

32 37 
34 3'J 
36 42 
38 45 
41 49 

53 

In the case of the problem of impact of two plates under the conditions of explosive 
welding, the quantity PQ (in view of the assumptions made above) is specified by the ex- 
pression 

eo 3 ,vo4v 0.6) 

where G is given by the relation (5.1). 

The entire stress layer is compressed by the load 2N and has the height 2h, but since 
at a sufficient distance from the point of contact the boundary of the rods is free from 
stresses, then, speaking of the critical load and the wave length along which the layer (the 
rod) is bent after the loss of stability, it is sufficient to consider the stress layer as a 
single rod of height h fixed to the elastic half-plane and being compressed by the longitudi- 
nal load N. 

In the (U, y) plane we construct a curve that separates the region of values of U and y 
for which wave formation is possible. Let Po be the critical value for which the stress lay- 
er loses its stability. Then the expression (5.6) gives the following connection between U 
and y: 

u = , m  - l uu2 ," 
(5.7) 

Points of the (U, y) plane lying above the curve (5.7) correspond to the values of the 
velocity of points and the angle of impact for which wave formation is possible. The follow- 
ing constraints are imposed on U and y. Since a subsonic impact of the plates is considered 
(U 2 < b~), then, for the stress layer to be compressed by a load that is equal or exceeds the 
critical load, it is necessary for the angle of impact to be greater than a certain angle 7,. 
On the other hand, at high velocities of the point of contact and large angles of impact the 
metal on the surface of the colliding plates can be regarded as liquid. In [8, 9] in the 
framework of the theory of a viscous liquid an inequality involving U and y is obtained for 
which jet formation is possible: 

H U  s i n  2 (712 )  
[i -- s-~ (-72)I >2, (5.8) 
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where v is the kinematic coefficient of viscosity, ~ - b~r, and T is the relaxation time of 
shear stresses. 

In the case where the metal on the plate surface behaves as a liquid, x < x s. 

Having used (5.7), (5.8), we obtain 

" /C 2 2" "1--t 

s i n ( y / 2 ) =  i ~ ~ ~ . (5.9) 

From (5.9) we determine the critical angle y** such that for y > y** Jet formation is 
possible ("outflow of the mass"), and this means that on the line of contact the stress lay- 
er is removed. Since we assume that the stress layer is the cause of wave formation, then 
it is natural that in the case y > y** there will be no wave formation. 

In Figs. 1 and 2 we have presented the graphs of the curve (5.7) for copper and iron, 
respectively, for different D o (x s = 0.i ~sec). The angle y, and the ratio of the wavelength 
into which the layer is bent to the thickness of the layer, k = k/h, are given in Table I. 
The values of the angle y** for different values of the parameter Do and ~S/T are given in 
Table 3. The height of the stress layer is specified by the expression 

h ---- I~d,,, 

where B is a numerical parameter not exceeding unity; d s is given by the expression (3.5). 

Then for the wavelength we obtain the relation 

>. ==: 13t.t>. ( 5 .  lO) 

We shall assume that B varies Within the limits from 0.i to 0.5, k varies from 1 to 2 
and, consequently, the coefficient 8k of d s in the expression (5.10) varies from 0.i to i. 

In [3] for the wavelength obtained in the case of explosive welding the experimental 
expression 

L = 2 6 / / s i n :  (?..2) (5.n) 

is given. 

The expression (5.10) can be written in the form (5.11) 

Z : -  L l l  s i n  -~ (y /2) ,  

where 

~k  r.u.___] L - - - - - | /  "-'. 
,aos r Z s in  (712} " 

The quantity L depends on the density of the material, the yield point, the velocity of 
the point of contact, and the angle of impact. We put Bk = 0.2 and find the values of L in the 
case of different U and y for copper [o s = 6.5 kbar (i kbar = 108 N/ma)] and iron (o s = 20 
kbar). These values are presented in Table 4. 
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PROPAGATION OF A TWO-DIMENSIONAL PLASTIC WAVE 

IN A NONLINEARLY COMPRESSED HALF-PLANE 

N. Mamadaliev and V. P. Molev UDC 539.374:534.1 

We shall consider a two-dimensional stationary problem of the propagation of a shock 
wave in a nonelastic ideal medium filling a half-space, when a moving load acts on its bound- 
ary. The solution of the problem is constructed by the method of characteristics for the 
case where the velocity of motion of the load exceeds the velocity of propagation of the 
shock wave in the medium whose compressibility is nonlinear and irreversible (Fig. I), while 
in [i] the case of a linear relation between p and e is investigated analytically. At the 
same time the surface of the medium where the pressure is applied is assumed, just as in 
[2, 3], only little deformed, and therefore it is assumed that the pressure is applied to a 
horizontal nondeformed surface (Fig. 2). 

The scheme proposed provides us with a possibility of carrying out the calculation of 
the parameters of the medium (in particular, of the ground) that is being modeled by a gen- 
eralized plastic gas [2] or an ideal liquid [4], and also in the case of wave propagation in 
reservoirs with a screen [3], and so forth. 

The results of the numerical calculation are represented in the form of curves of the 
variation of the pressure and the velocity of the medium in the region of perturbation along 
the wave front. 

Let a monotonically decreasing normal pressure move along the surface of a half-space at 
a velocity D (see Fig. 2). Then in the half-space a shock wave with a curvilinear front E 
will propagate at a velocity ~, the value of which is not known in advance and is determined 
in the solution process of the problem. 

We shall assume that the medium on the front Z is instantaneously loaded, while behind 
the front (in the perturbed region) there occurs unloading which is assumed to be linear. In 
this case on the front Z from the condition of conservation of the mass and the impulse we 
obtain 

: p* < ) ,  po <: p*, , :  = o, (1) 

while the equation of state of the medium is represented in the form of a polynomial 

p~ ~ O(1P~ ~ -}- ~2E ~2. (2) 
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